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Abstract
A simple and practical semiclassical method based on an amplitude-free quasi-
correlation function is proposed to quantize the energy spectrum of classically
chaotic systems. Since classical trajectories used in this function are required to
satisfy only a simple condition, the present method can be readily applied to a
relatively large system. Numerical examples, which compare the semiclassical
spectra with those of the full quantum mechanics in a two-dimensional system
covering the regular and highly chaotic energy regions, show very clearly
that the proposed amplitude-free quasi-correlation function can quantize chaos
surprisingly well.

PACS numbers: 05.45.Mt, 03.65.Sq, 33.20.Tp, 36.40.−c

1. Introduction

The quantization of the energy spectrum in chaotic classical systems and the investigation of its
mechanism remain one of the most fundamental issues in quantum chaos [1, 2]. Gutzwiller’s
periodic orbit theory [3] opened a new era of quantum chaos. The theory treats the density of
states with the semiclassical Feynman kernel Ksc as

D(E) =
∫

dq

∫
dtKsc(q, q, t) exp

( i

h̄
Et
)

(1)

and the successive applications of the stationary phase approximations to D(E) lead to an
expression

D(E) � 1

(2πh̄)N

∫ ∫
dq dpδ(E − Hcl(q, p)) +

1

πh̄

∑
γ

∞∑
k=1

Tγ cos
(
k
(

Wγ

h̄
− π

2 λγ

))
√∣∣Det

(
Mk

γ − I
)∣∣ (2)

where the first term on the right-hand side is the well-known Thomas–Fermi density of states
based on the classical Hamiltonian Hcl(q, p), and the second oscillatory terms represent the
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quantum interference among the periodic orbits (specified by γ ) in terms of the period Tγ , the
action integral Wγ , and the monodromy matrix Mk

γ in the transversal direction of phase-space
periodic motion. These terms should be summed up with respect to the times of repetition
k over all the possible periodic orbits. Although this theory is very clear and still of central
importance, the following difficulties are widely recognized. (1) In chaotic systems, the
periodic orbits emanate almost exponentially with the period. (2) It is extremely difficult to
pick those periodic orbits even in two-dimensional generic systems. (3) The periodic orbit
expansion is not absolutely convergent in practice. In the literature, many endeavours have
been devoted to overcoming these difficulties. For instance, Voros [4] and Berry and Keating
[5] developed theories to improve the convergence property. Very recently, Vergini et al [6]
have demonstrated the dominance of short periodic orbits to generate chaotic wavefunctions
in terms of resonant basis functions. Nevertheless, the quantization of chaos within the
framework of strictly periodic orbits is still far from the practical level1.

A natural alternative to the periodic orbit theory is to return to the straightforward
evaluation of the correlation function using the semiclassical kernel

Ksc(q, q0, t) = (2π ih̄)−N/2
∫

δ(q − qt)

∣∣∣∣ ∂qt

∂p0

∣∣∣∣
1
2

exp

(
i

h̄
S(qt , q0, t) − iπ

λ

2

)
dp0 (3)

in a wavepacket dynamics φ(t) as

〈φ(0)|φ(t)〉 = (2π ih̄)−N/2
∫

φ∗(qt )φ(q0)

∣∣∣∣ ∂qt

∂p0

∣∣∣∣
1/2

exp

(
i

h̄
S(qt , q0, t) − iπ

λ

2

)
dq0 dp0 (4)

the Fourier transform of which should give a relevant spectrum. This direct approach does not
specify the geometry of trajectories and hence seems very powerful. All we need to do is to run
as many anonymous trajectories as possible. The kernel in equation (3) is called the initial value
representation (IVR) [7–11], which makes it possible to launch trajectories with the initial
conditions (q0, p0) in phase space and removes the well-known singularity |∂qt/∂p0|−1/2 = ∞
at caustics [12]. We refer to this method as the K-IVR in what follows. However, a
fatal difficulty is hidden behind equation (4) [13]: the amplitude factor |∂qt/∂p0|1/2 in
equation (4) undergoes an exponential increase (divergence) in a manner of |∂qt/∂p0| 1

2 ∼
exp(K̄t/2), where K̄ is an average of the local K-entropy [14] of a trajectory. K̄ becomes
positive and larger as chaos becomes stronger. This type of spurious divergence is basically
shared by other semiclassical theories. Thus, in a strongly chaotic system having a large K̄ ,
the semiclassical correlation function practically gives not delta-function spikes in the energy
spectrum but at most only Lorentzian peaks with a bad resolution, as will be exemplified later
in section 3.2 in order to confirm the level of accuracy of equation (4).

It is thus widely recognized that the difficulty in semiclassical quantization originates
from the amplitude factor in the kernel. Recently, we have formulated a semiclassical quasi-
correlation function that is not associated with the amplitude factor [15]. We call it the
amplitude-free quasi-correlation function of type I (AFC-I). Since the AFC-I is represented
in terms of what we call turn-back orbits (see equation (26) for the definition), which are very
easy to generate, it can be applied for the quantization of large chaotic systems practically. In
section 3.3 we show numerical examples of the AFC-I spectra to compare the full quantum
(FQ) spectra for some selected cases including regular, weakly chaotic, and strongly chaotic
systems. It turns out that the AFC-I produces the spectral lines at correct positions (energies)
very well, but also the resultant spectrum is contaminated with rather strong noises.

1 By ‘practical level’, we mean practical quantization of chaos for general potentials, which are not as simple as the
stadium billiard, of more than two degrees of freedom.
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Analysing the noises in the AFC-I spectra, we have found that the AFC should efficiently
pick those special turn-back orbits that are weakly periodic (turn-back orbit with weak
periodicity). Thus, we have reformulated the AFC-I so as to take account of the weak
periodicity in an efficient manner without searching for the strictly periodic orbits. The
reformulated quasi-correlation function is called AFC-II. Its technical advantages, freedom
from the diverging amplitude factor and easy generation of the turn-back orbits, are all
maintained. The numerical test using the common systems to the kernel and AFC-I reveals
that the AFC-II gives surprisingly sharp and correct spectra with low noises. Thus it turns out
that the AFC-II provides a very promising approach for quantization of large systems. We
also discuss the basic properties and remaining difficulty of the AFC-II.

The present paper is organized as follows. In section 2, we outline the semiclassical
theory (action decomposed function) and the AFC-I based on it. Prior to the presentation of
the spectra of the AFC-I, we show, in section 3, the exponential increase of the correlation
function and the resultant spectra calculated with the K-IVR of equation (4). This will provide
a standard with which to judge the level of performance of other semiclassical theories. We
then proceed to test the AFC-I using the common system. Although the situation is drastically
improved, AFC-I turns out to be contaminated with strong noise. We reformulate the AFC-I
in section 4 in order to suppress the noise, demonstrating the dramatic performance of the
AFC-II. We conclude the paper in section 5 with some remarks.

2. Action decomposed function and AFC-I

We summarize the action decomposed function (ADF) [16] and associated AFC [15] in this
section.

2.1. Action decomposed function

Our semiclassical argument begins with the ADF of the following form

�p0(q, t) = F(q, t) exp
[ i

h̄
S2(q, p0, t)

]
(5)

which is to be propagated in terms of the equation of motion of the lowest order approximation
in h̄ to the Schrödinger equation. S2 is the classical action that satisfies the Hamilton–Jacobi
equation of the F2 type generating the function of Goldstein [17]. Hence the initial form of
�p0(q, t) is

�p0(q, 0) = F(q, 0) exp
[ i

h̄
p0q

]
. (6)

The function F(q, t) is determined by the following equation of motion

∂F

∂t
+ v · ∇F = −1

2
(∇ · v)F (7)

where v(t) = ∂S2(q, p0, t)/∂q is the classical velocity. We use the mass-weighted coordinates
throughout so that all the masses are scaled to unity. Equation (7) is integrated as follows. We
start from the following observation:

∂F 2

∂t
+ ∇ · (vF 2) = 0. (8)

Note that F 2 rather than |F |2 is considered in this ‘equation of continuity’ (notice that F 2 can
be complex). F 2 can be readily integrated locally along classical paths in terms of a Jacobian
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determinant ∂qt/∂q0 which is a minor determinant of the so-called stability matrix. It is not
difficult to derive the equation

∂

∂t

(
∂qt

∂q0

)−1

+ ∇ ·
(

v

(
∂qt

∂q0

)−1
)

= 0 (9)

from the Hamilton–Jacobi equation for S2(qt , p0, t). Furthermore, we have the initial condition
(∂qt/∂q0)

−1 = 1, since qt = q0 at t = 0. Thus (∂qt/∂q0)
−1 can be regarded as a local

representation of the Green function for the propagator of equation (8). On comparing
equations (8) and (9), together with the initial conditions above, we immediately have

F(qt , t) = F(q0, 0)

(
∂qt

∂q0

)− 1
2

= F(q0, 0)

∣∣∣∣ ∂qt

∂q0

∣∣∣∣
− 1

2

exp

[
− iπM(q0, qt )

2

]
(10)

where the derivative ∂qt/∂q0 is taken under the fixed initial momentum p0, and M(q0, qt ) is
the Maslov index in this representation which counts the number of zeroes of ∂qt/∂q0 up to the
degeneracy. Thus the local solution, denoted by �

p0
local(qt , t), is evolved in time on an action

surface, which is in turn to be propagated in terms of trajectories of a fixed initial momentum
p0. The final expression for the wavefunction is then written as

�p0(q, t) =
∫

δ(q − qt)�p0(qt , t) dqt

=
∫

δ(q − qt(q0, p0))F (q0, 0)

∣∣∣∣ ∂qt

∂q0

∣∣∣∣
1
2

exp

[
i

h̄
S2(qt , p0, t) − iπM(q0, qt )

2

]
dq0

(11)

which will be used to make the auto-correlation function.

2.2. Square root of volume elements in semiclassical integrals

To treat the transformation among the semiclassical integrals systematically, we consider a
rather general multi-dimensional integral

I =
∫

f (q0) dq0 =
∫

f (qt )

∣∣∣∣∂q0

∂qt

∣∣∣∣ dqt . (12)

In this expression, we should note that the small volume element dqt can be an oriented
volume with respect to dq0, the sign of which is represented in terms of that of the Jacobian
determinant ∂qt/∂q0, since the volume can be inverted in many ways in addition to the change
in its shape and volume. Let us define the square root of the volume elements of the integral
[15] such that

I =
∫

f (q0) dq
1
2

0 dq
1
2 ∗

0 (13)

where dq
1
2 ∗

0 is the complex conjugate of dq
1
2

0 . The positive semidefinite quantity dq0 (dqt) is
understood to be a product

dq0 ≡ |dq0| = dq
1
2

0 dq
1
2 ∗

0 and dqt ≡ |dqt | = dq
1
2
t dq

1
2 ∗
t . (14)

As in the ordinary complex numbers, the square of dq
1
2
t is not equal to dqt unless the former

is real-valued. We now define dq
1
2
t as

dq
1
2
t = exp

[
i
π

2
N(qt)

]
|dqt | 1

2 (15)
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where N(qt ) is the sum of zeros up to the degeneracy of the following determinant picked up
by a Jacobian determinant

∂qt

∂qt=X

(16)

along a path. It is convenient to set the reference of time t = X at a far remote past,
symbolically denoted as X = −∞. With these quantities, the conservation rule including the
phase can be rewritten in a compact form as

F(qt , t) dq
1
2
t = F(q0, 0) dq

1
2
0 (17)

which is valid when the two points are connected by a trajectory. In fact, equation (17) comes
back to

F(qt , t) exp
[
i
π

2
N(qt )

]
|dqt | 1

2 = F(q0, 0) exp
[
i
π

2
N(q0)

]
|dq0| 1

2 (18)

giving the Maslov index

M(q0, qt ) = N(qt ) − N(q0). (19)

2.3. AFC-I

Rewriting the ADF of equation (11) as

�p0(q, t) =
∫

δ(q − qt) exp
[ i

h̄
S2(qt , p0, t)

]
F(q0, 0) dq

1
2
0 dq

1
2 ∗
t (20)

we study the following correlation function

Cp0(−t, t) = 〈�p0(−t)|�p0(t)〉
=
∫ ∫

δ(q−t−qt)F
∗(q01, 0)F (q02, 0) exp

[ i

h̄
S1(qt , q02, t) +

i

h̄
p0q02

− i

h̄
S1(q−t , q01,−t) − i

h̄
p0q01

]
dq

1
2 ∗

01 dq
1
2

02 dq
1
2−t dq

1
2 ∗
t (21)

from which the energy spectrum is to be extracted. S1(qt , q0, t) is the ordinary F1-type action
integral [17]. It is easy to confirm Cp0(−t, t)∗ = Cp0(t,−t).

Equation (21) requires two trajectories to end up at the same point qt with different initial
points q01 and q02, namely,

qt(q02,p0) = q−t (q01,p0) (22)

where qt(q02, p0), for instance, indicates a position qt reached by a trajectory at time t
that started with an initial condition (q02, p0) at time t = 0. (Note that q−t (q01,p0) =
qt(q01,−p0).) Therefore, we have to search a pair of (q01, q02) satisfying equation (22) for
given p0 and t .

Next let us integrate Cp0(−t, t) over p0 to pick spectral information as much as possible
as∫

dp0Cp0(−t, t) = (2πh̄)N
∫ ∫

δ(q−t−qt)F
∗(q01, 0)F (q02, 0)δ(q01 − q02)

× exp
[ i

h̄
S1(qt , q02, t) − i

h̄
S1(q−t , q01,−t)

]
dq

1
2 ∗

01 dq
1
2

02 dq
1
2−t dq

1
2 ∗
t (23)

which gives the additional condition, that is

q01 = q02. (24)
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Inserting this into equation (22), we have

qt(q01, p0) = q−t (q01, p0) = qt(q01,−p0). (25)

This condition can be generally satisfied by the following two classes of trajectories. (i) The
periodic orbits satisfying qt(q01, p0) = q01 and pt(q01, p0) = p0, namely (qt , pt ) = (q01, p0).
(ii) The turn-back orbits that satisfy

q−t = qt via p0 = 0 (26)

(at any q01) [15]. The geometrical meaning of the turn-back orbit is clear. It encounters the
turning point at t = 0 (by satisfying p0 = 0) and traces back along the same path to the same
point (q−t = qt). Therefore, if the quantum phase via the action integral along the incoming
trajectory (t < 0) can have a constructive interference with that of the reflective wave (t > 0),
we can expect the formation of a standing wave on this trajectory. This is physically analogous
to a waving motion of a string, one end of which is fixed on a wall and the other is shaken.
We should, of course, study both the periodic and turn-back orbits. However, it is obvious
that adopting the strictly periodic orbits brings this correlation function back into the difficult
situations mentioned above. We therefore concentrate first on the turn-back orbits to estimate
the correlation function, since they are far easier to generate (simply put p0 = 0 at any
point q01).

In coping with the oscillatory integrals such as equation (23), we do not perform
the stationary phase approximation faithfully, but we simply retain the turn-back orbits in
Cp0(−t, t), neglecting all the contributions made by other paths. The additional amplitude
factor arising from the second derivative of the phase factor is not evaluated in the present
context. This is because the accurate evaluation of the absolute magnitude of the correlation
function (or the power spectrum thereof ) is not necessary. Only digital type information
is required, which should give non-zero values at the positions of the eigenvalues and zero
otherwise. Setting q01 = q02 (=q0) and p0 = 0 in equation (21), we devised an AFC [15],
which we here call AFC-I,

C̃I (−t, t) =
∫

dq0F
∗(q0, 0)F (q0, 0) exp

[ i

h̄
(S1(qt , q0, t)

− S1(q−t , q0,−t)) − i
π

2
M(q−t , qt )

]
(27)

where the Maslov index is to be calculated along the turn-back orbits q−t → qt . The spectrum
is to be extracted as

S(E) = Re lim
T →∞

2

T

∫ T/2

0
C̃I (−t, t) exp

(
2

i

h̄
Et
)

dt

= lim
T →∞

2

T

∫ T/2

0
dt

∫
dq0|F(q0, 0)|2cos

[
2

h̄
S1(qt , q0, t) − π

2
M(q−t , qt ) +

2

h̄
Et

]
. (28)

It is remarkable that the annoying amplitude factor, such as |∂qt/∂p0|1/2 in equation (4)
or |∂qt/∂q0|1/2 in equation (11), is missing in this expression. This is because the amplitude
factor ∂qt/∂q−t is always unity in the manifold of the turn-back orbits [15]. (For other AFCs,
see [18, 19].) Recall that the amplitude factors diverge exponentially for a chaotic system.
Note, on the other hand, that the Maslov index does remain in C̃I (−t, t) as an essential part of
the quantum phase. We also note that C̃I (−t, t) is written in q-representation and the concept
of turn-back orbit nor C̃I (−t, t) of equation (27) is canonically invariant (see below).
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3. Numerical studies for AFC-I and K-IVR

We here present the numerical performance of the AFC-I, while the final goal of this paper is
to propose a revised version of the AFC-I, namely the AFC-II, through the analysis of AFC-I.
Prior to the presentation of AFC-I and II, we show some numerical examples of the exponential
increase of the correlation function estimated with the K-IVR of equation (4) and associated
spectra. The systems used for the test are all common to these semiclassical methods. They
will clearly demonstrate how difficult the quantization of chaos is, and moreover the level of
performance of AFC-I and AFC-II can be examined in an objective perspective. Although
there can be various ways to reformulate the original semiclassical kernel to have a better
performance, we do not survey these as this is out of our scope in this paper. Also, we could
not carry out the Gutzwiller trace formula for comparison because of its technical difficulty.

3.1. Systems

The following two-dimensional modified Hénon–Heiles system [20]

H = p2
x

2mx

+
p2

y

2my

+
x2 + y2

2
+ x2(0.6y2 + y) +

y3

3
(0.2y − 1) + Ax (29)

with mx = 1.0087 and my = 1.0 is used as a system to test the theories we are going to
compare. Such a small mass imbalance was introduced before to break a certain phase-space
structure but it has no significance in the present context. The last term Ax has been introduced
to break the spatial symmetry with respect to the axis of x = 0. This system can become
strongly chaotic with appropriate parameters and thereby gives a stringent test for the energy
quantization of chaos.

As for the AFC, we choose F(q0, 0) in equations (6) and (28) to be the coherent-state
Gaussian wavepacket of the minimum uncertainty

F(q, 0) = exp

[
− 1

2h̄
((x − x0)

2 + (y − y0)
2)

]
(30)

(put p0 = 0 in equation (6) for the turn-back orbits), while for the wavepacket in the K-IVR
of equation (4) we use

φ(q, 0) = exp

[
− 1

2h̄
((x − x0)

2 + (y − y0)
2) +

i

h̄
px0(x − x0) +

i

h̄
py0(y − y0)

]
. (31)

The Planck constant is h̄ = 0.005. For the exact eigenvalues, we numerically integrate the
Schrödinger equation to propagate φ(q, t) to compute the correlation function and associated
spectra. The Kosloff FFT method [21] and the symplectic integrator [22] have been used to
integrate the Schrödinger equation. The spectrum thus obtained is denoted as the FQ spectrum
and is used for comparison throughout this paper.

With this Hamiltonian, the following three selected cases are to be studied.

(a) Regular system: We focus on the energy region around E = 0.03 for the Hamiltonian
A = 0. See figure 1 for the Poincaré surface of the section taken at x = 0 with px > 0,
showing that the phase space is mostly filled with the KAM tori.

(b) Weakly chaotic system: This system is characterized in terms of the so-called vague tori
[23], at an energy region E = 0.25 with A = 0. The Poincaré section in figure 2 displays
such an example of the time propagation of a vague torus, in which a trajectory that
initially happens to be very close to the torus-like structure begins to leave and wander
in the wider space of phase space after a long time. Other sampled trajectories may start
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Figure 1. Classical Poincaré surface of section at x = 0, px > 0 at E = 0.03 for the potential
A = 0.0. The system is filled with the KAM tori. (The absolute units are used throughout.)
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Figure 2. Classical Poincaré surface of section at x = 0, px > 0 at E = 0.25 for the potential
A = 0.0. A time propagation of a broken torus.

from the chaotic sea. It should be noted that the vague (broken) tori are usually adjacent
to the fully chaotic sea that lies in slightly higher energy phase space. Therefore, even if a
quantum wavepacket is selected in such a way that its classical energy (x0, px0, y0, py0)

is centred at E = 0.25, it may cover the higher energy area corresponding to very strong
chaos.

(c) Strongly chaotic system: This is at an energy region around E = 0.15 in a slightly
different Hamiltonian of A = 0.1. As shown in figure 3, the phase space is filled with
chaotic sea almost everywhere.

3.2. Numerical study for the semiclassical kernel (K-IVR)

We first show the numerical examples of the time propagation of the correlation function of
equation (4) and the resultant spectra extracted from them. The trajectories are sampled in
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p y

y

Figure 3. Classical Poincaré surface of section at x = 0, px > 0 at E = 0.15 for the potential
A = 0.1. The system is almost fully chaotic.
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C
K

− I
V

R
( t

)

S(
E

)

Et
0 0.01 0.03 0.05

Figure 4. (a) The real part of the correlation function in the presence of the KAM around
E = 0.03 for the Hamiltonian A = 0.0 with the number of samples trajectories Nt = 10 000.
(b) A close-up of the spectrum around E = 0.03 taken from the correlation function of (a) for the
time interval T = 655. The spectral positions given by the K-IVR (red) and FQ (green) spectra
are indistinguishable. (The absolute units are used throughout.)

q-space so as to mimic the Gaussian part of φ(q, 0) in equation (31), i.e. |φ(q, 0)|, using the
importance sampling technique. Although the correlation function of equation (4) requires us
to sample the trajectories in a uniform distribution of the initial momentum p0, we truncate
the high kinetic energy components so that the energy distribution of thus sampled trajectories
has a peak near the energy under study. Without such an artificial truncation, the divergence
property of the correlation function is more violent.

(a) Regular system: The time evolution of the correlation function is shown in figure 4(a).
It oscillates normally without divergent behaviour. The resultant semiclassical spectrum
(the red curve in figure 4(b)) is well discretized at correct positions represented by the FQ
spectrum in green. No difficulty arises in this case.

(b) Weak chaos: We next consider a wavepacket dynamics whose centre at t = 0 has the
classical energy E = 0.25 for the Hamiltonian A = 0. The energy distribution of the
sampled trajectories for this particular case has a peak at around E = 0.25, as described
above. Figure 5 exhibits the time propagation of the resultant correlation function. After
some induction time up to t ∼ 150, during which the magnitude remains of the order of
1, it grows exponentially. It is obvious that the Fourier transform of the above correlation
function beyond the induction time is totally meaningless. Hence, we show three spectra
taken from the relatively short time intervals; (a) [0, 41], (b) [0, 82], and (c) [0, 164]. In



4794 K Hotta and K Takatsuka

lo
g 10

|C
K

− I
V

R
( t)

|

t

-10

10

30

50

70

0 200 400 600

Figure 5. Exponential increase of the correlation function after a short induction time in the case
of weak chaos; the Hamiltonian A = 0.0 around E = 0.25, and Nt = 10 000.

E

S(
E

)

(b)(a)

S(
E

)

(c)

S(
E

)

EE
0.24 0.245 0.25 0.255 0.260.24 0.245 0.25 0.255 0.260.24 0.245 0.25 0.255 0.26

Figure 6. Spectrum taken from the correlation function of figure 5 at the energy around E = 0.25.
Red and green curves indicate the K-IVR and FQ spectra, respectively. The K-IVR spectra are
obtained by the Fourier transform in the interval (a) [0, 41] (the resolution �E = 7.67 × 10−4),
(b) [0, 82] (�E = 3.84 × 10−4) and (c) [0, 164] (�E = 1.92 × 10−4).

figure 6, the red and broad spectra represent the K-IVR spectra. The spectrum in green is
the FQ spectrum. Although the energy spacing in the FQ spectrum looks quite regular, it
actually fluctuates. Comparing the two spectra, the K-IVR directly exposes the difficulty
that was mentioned in the introduction. In particular, the spectrum taken from the interval
[0, 164] suggests that the present example happens to be extremely tough in that the high-
energy trajectories contained in the sampled ensemble seem to have ruined the correlation
function entirely. The present example cautions that a direct and naive application of
the semiclassical kernel can result in such a poor spectrum. Incidentally, sophisticated
methods have been proposed to quantize such weakly chaotic systems (mainly due to the
vague tori) [23, 24], most of which can be practically applied only to two-dimensional
systems. These methods are not surveyed numerically in this paper. Also, there are some
ways to make a partial remedy over the kernel methods; see [11](b), [13], and references
therein.

(c) Strong chaos: The time propagation of the correlation function is shown in figure 7 and
the relevant spectra at around E = 0.15 for A = 0.1 are displayed in figure 8 again for the
time intervals (a) [0, 41], (b) [0, 82] and (c) [0, 164]. Despite the fact that the spectrum
looks more irregular in this case than in the above weak chaos, the correlation function of
the former increases slightly slower than the latter. Concomitantly, the resultant spectra
of figure 8 seem rather better. Nevertheless, it is obvious that the K-IVR fails to give a
good resolution.
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Figure 7. Exponential increase of the correlation function after a short induction time in the case
of strong chaos; the Hamiltonian A = 0.1 around E = 0.15, and Nt = 10 000.
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Figure 8. Spectrum taken from the correlation function of figure 7 at the energy around E = 0.15.
Red and green curves indicate the K-IVR and FQ spectra, respectively. The K-IVR spectra are
obtained by the Fourier transform in the interval (a) [0, 41] (the resolution �E = 7.67 × 10−4),
(b) [0, 82] (�E = 3.84 × 10−4) and (c) [0, 164] (�E = 1.92 × 10−4).

3.3. Numerical study for AFC-I

We now test the accuracy of the AFC-I spectra. Putting p0 = 0 suffices to generate the turn-
back orbits. These are sampled in q0-space so as to mimic the functional shape of F(q0, 0) in
equation (30) using the importance sampling technique.

(a) Regular system: Figure 9 displays the spectrum arising from the AFC-I (in red) and that of
the FQ mechanics (in green), for the energy region in which the KAM are overwhelmingly
dominant. In what follows, all the AFC spectra should not be compared in their spectral
height, since the AFC is already different from the FQ correlation function. Only the
spectral positions (energies) should be examined. As seen in figure 9, the AFC-I spectrum
is very satisfactory. In this respect, we recall that the EBK condition rests only on the
information of phase (action integrals) associated with tori, whereas the Gutzwiller trace
formula and the K-IVR seriously take account of the amplitude factor through the stability
exponents in addition to the phases, thereby distinguishing regular and chaotic systems.
On the other hand, the Schrödinger equation can quantize the energy levels irrespective of
classical integrability. Likewise, the calculation of the AFC-I (and AFC-II to be considered
in the next section) is performed in terms of the phases alone without distinction of the
classical integrability. Therefore, the test of the AFC-I in the regular system is highly
non-trivial.

(b) Weak chaos: Figure 10 gives the AFC-I and FQ spectra (red and green, respectively) for
the weak chaos. It is remarkable that the AFC-I actually yields line spectra at most of the
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Figure 9. Comparison between the spectra in the regular region with A = 0.0 around E = 0.03 by
AFC-I (in red) and FQ (in green). T = 655 (the resolution �E = 4.79 × 10−5) and Nt = 20 000.
Only the spectral positions on the energy coordinate should be compared for all the AFC
spectra.
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Figure 10. Comparison between the spectra arising from a vague tori with A = 0.0 around
E = 0.25 by AFC-I (in red) and FQ (in green). T = 655 (the resolution �E = 4.79 × 10−5) and
Nt = 20 000. Only the spectral positions on the energy coordinate should be compared.

correct positions. However, the noise in between the neighbouring spectral lines is not at
a negligible level. Trajectories having higher energy may have caused a bad effect in the
spectrum as in the case of the K-IVR. The Fourier transform has been performed in the
far longer time interval [0, 655] than in the case of the K-IVR, which could not exceed
the interval of [0, 200]. The long-time integration has been made possible by the lack of
the exponential divergence.

(c) Strong chaos: We now challenge the quantization of strong chaos. In contrast to the cases
of regular dynamics and weak chaos, it turns out that the AFC-I spectrum is associated
with a spectral width despite the fact that the AFC is not associated with the diverging
amplitude. To see how the spectral positions are accurate by reducing the effect of such
a width, we have squared the AFC-I spectrum (in red) in figure 11. The origin of the
width is discussed in the next section. It turns out that most of the spectral peaks are
found at the correct positions, but the noise makes spectral identification rather difficult.



Semiclassical quantization of chaos in terms of an amplitude-free quasi-correlation function 4797

0.13 0.14 0.15 0.16

E

S(
E

)2

Figure 11. A precise view of the two spectra arising from AFC-I (red) and FQ (green) for A = 0.1
around E = 0.15 with T = 655. The AFC-I spectrum is squared.

Although the progress from the K-IVR is dramatic, one further step is required to improve
the spectrum.

4. AFC-II

4.1. Definition of AFC-II

To see the origin of the noise contaminating the AFC-I spectra, we look back at equation (27).
In the integral over the initial points q0, we can apply the stationary phase argument. Then,
those trajectories among the turn-back orbits that satisfy

∂qt

∂q0

∣∣∣∣
p0=0

∂S1(qt , q0, t)

∂qt

− ∂q−t

∂q0

∣∣∣∣
p0=0

∂S1(q−t , q0,−t)

∂q−t

= 0 (32)

should make a major contributions to the integral C̃I (−t, t). For the turn-back orbits, it holds
that

∂qt

∂q0

∣∣∣∣
p0=0

= ∂q−t

∂q0

∣∣∣∣
p0=0

(33)

since qt = q−t and p0 = 0. Thus the above stationary phase condition is reduced to

∂S1(qt , q0, t)

∂qt

− ∂S1(q−t , q0,−t)

∂q−t

= pt(q0, p0, |t|) − p−t (q0, p0, |t|) = 0 (34)

which requires that the relevant turn-back orbits should also be periodic orbits (qt = q−t and
pt = p−t ) with the period 2t . Hence, only when t happens to be the one half of the period
of the relevant periodic orbits, can C̃I (−t, t) have a significant value in the case of a small h̄.
Thus, the very accurate integration of equation (27) should be accomplished with the periodic
orbits passing through (q0,p0) and (qt ,pt ). On the other hand, the noise in the AFC-I might
have arisen from the numerical difficulty in treating such an oscillatory integral, in which
phase cancellation due to destructive interference among the non-periodic orbits should be
performed in a well-balanced manner.

Nonetheless, it is still not a good idea to apply the stationary phase approximation sticking
to strict periodic orbits. Therefore, we take a less rigorous (intuitive in a sense) approach.
First we recall that the strict periodic orbits are required in the limit of h̄ → 0. For the finite
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value of the Planck constant, this strict periodicity condition may be relaxed to some extent.
So, we can consider the turn-back orbits under a weakly periodic boundary condition. The
‘weak periodicity’ can be efficiently taken into account by means of the following filtering
operation, that is, a replacement of the F ∗(q0, 0)F (q0, 0) in the AFC-I (see equation (27)) as

F ∗(q0, 0)F (q0, 0) →|F(q2t , 0)F (q0, 0)|. (35)

The effect of this replacement can be readily understood. Suppose that F(q0, 0) is sharply
localized at a point, say qX. To represent it, a turn-back orbit should be placed at q0 = qX with
p0 = 0 (V (qX) = E) at t = 0. Then, the function |F(q2t , 0)F (q0, 0)| becomes very small
as soon as the trajectory leaves the point qX, and becomes large only when it comes back to
the same point qX at time 2t (q2t = qX). On the other hand, the relation V (qX) = E gives
p2t = 0 uniquely. Hence, this turn-back orbit turns out to be a strict periodic orbit with the
period 2t , since (q0, p0) = (q2t ,p2t ) = (qX, 0). With this machinery, we can find the periodic
orbits within the set of turn-back orbits. In a multi-dimensional system, however, these special
orbits can be found only by chance with an extremely small probability. Within this scheme,
therefore, we relax the strict periodic orbit condition by letting the function F(q0, 0) have a
finite width in the q0-space. Thus, the turn-back orbit that comes back to the vicinity of qX may
give a non-zero value to |F(q2t , 0)F (q0, 0)| with p2t � 0. In this way, the turn-back orbits
with weak periodicity can be efficiently taken into account, and other orbits are supposed to
make a negligible contribution to the quasi-correlation function.

Moreover, for the relevant periodic orbits, it holds that

S1(qt , q0, t)|p0=0 − S1(q−t , q0,−t)|p0=0 = S1(q2t , q0, 2t)|p0=0 (36)

and

M(q−t , qt ) = M(q0, q2t ) (37)

since these are also turn-back orbits. Hence, we define a revised AFC

C̃II (0, 2t) =
∫

dq0|F(q2t , 0)F (q0, 0)| exp
[ i

h̄
S1(q2t , q0, 2t) − i

π

2
M(q0, q2t )

]
(38)

which we call AFC-II. The resultant spectrum can be calculated by the change of variable
2t → t as

S0(E) = Re lim
T →∞

1

T

∫ T

0
dt

∫
dq0|F(qt , 0)F (q0, 0)|

× exp

[
i

h̄
S1(qt , q0, t)

∣∣∣
p0=0

−i
π

2
M(q0, qt ) +

i

h̄
Et

]
. (39)

4.2. Numerical study for AFC-II

We now test the AFC-II using the same systems as in the preceding section. The number of
turn-back orbits used (Nt ) is 20 000, although a very good convergence with respect to Nt

seems to be already attained by Nt = 10 000. (Incidentally, Nt for the K-IVR was 10 000,
since adding more trajectories in the random sampling made the exponential growth of the
correlation function even worse.)

(a) Regular system: For the AFC-II, again, only the spectral positions should be
compared. Figure 12 shows the AFC-II spectrum (in red), whose spectral positions
are indistinguishable from those of the FQ spectrum within the present resolution. We
thus have confirmed that K-IVR, AFC-I and AFC-II all yield the correct spectra for the
regular system irrespective of the presence of the amplitude factor.
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Figure 12. Comparison between the spectra in the regular region with A = 0.0 around E = 0.03
by AFC-II (in red) and FQ (in green). T = 655 and Nt = 20 000. Only the spectral positions on
the energy coordinate should be compared.
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Figure 13. Comparison between the spectra arising from a vague tori with A = 0.0 around
E = 0.25 by AFC-II (in red) and FQ (in green). T = 1309 (the FFT resolution �E = 2.40×10−5)
and Nt = 20 000.

(b) Weak chaos: Figure 13 displays a direct comparison of the resultant spectra from the
AFC-II (in red) and the FQ (in green). Agreement of the spectral positions between
them is excellent. In addition, direct comparison with the AFC-I spectrum (figure 10)
demonstrates that the level of the noise is drastically lowered. As noted above, the
ensemble of the initially sampled trajectories must include those that have higher energy
covering strong chaos, even though the energy E = 0.25 of A = 0 is mostly in the area
of weak chaos. In clear contrast to the K-IVR, nevertheless, the AFC-II turns out to be
far less affected by such high-energy components.

(c) Strong chaos: We now move on to the system of strong chaos by choosing A = 0.1 at
the energy E = 0.15. Figure 14(a) shows a direct comparison of the resultant spectra
by the AFC-II (in red) and the FQ (in green) at the energy around E = 0.15, given
with T = 655. Again, the spectral heights should not be compared. The basic agreement
between the two spectra is very good in spite of the fact that the system is extremely chaotic.
The noise level and spectral width have been dramatically improved as compared with
the spectra for K-IVR (figure 8) and for AFC-I (figure 11). In order to emphasize that the
AFC-II is certainly composed of the correct spectral lines, we show its squared spectrum
in figure 14(b). Again the semiclassical results are shown in red. The agreement is really
remarkable.
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Figure 14. A precise view of the two spectra arising from AFC-II and FQ for A = 0.1 around
E = 0.15 with T = 655 (the FFT resolution �E = 4.79 × 10−5) and Nt = 20 000. (a) The
spectra by AFC-II (in red) and FQ (in green). (b) The squared spectrum of AFC (in red) and the
original spectrum by FQ (in green).

4.3. On the width of the AFC-II spectrum

Comparing figures 13 and 14, we notice that the latter spectrum is associated with a broader
width. At present, the origin of this width is not clear. Obviously, the AFC-II has no
mechanism to reflect the diverging property of the amplitude factor. A possible explanation
for this is as follows. It is well known that a chaotic trajectory generally visits the close vicinity
of many different periodic orbits ‘tentatively’ (can be long) and changes the hosting periodic
orbits from time to time in an irregular manner. For instance, let us suppose that we have a
strictly periodic orbit of the period T. Then there must exist a chaotic orbit(s) that may stay very
close to this periodic orbit for an interval, say, [0, 2T ] and becomes separated ‘exponentially’
from it. This kind of chaotic orbit, which can be regarded as a weakly periodic orbit, will
certainly contribute to the AFC-II, but it also behaves as though it represents a decay-like
situation due to the exponential separation. Thus they can bring about a width around the
spectral lines. On the other hand, the Gutzwiller periodic orbit theory considers only the
strictly periodic orbits, and such a decay-like dynamics in the infinitesimal vicinity of them is
taken into account through the eigenvalues of the stability matrix (or the monodromy matrix)
in the amplitude factor of the semiclassical Green’s function, which correspond to the positive
Liapunov exponents. This is common to the K-IVR of equation (4) and can be the origin
of the difficulty as stated in equation (4). In contrast, the AFC-II is free of such a diverging
amplitude factor, but the phase-space structure of the decaying nature in the vicinity of the
periodic orbits is directly taken into account by the turn-back orbits with weak periodicity.
Hence, the physical origin of the spectral width seems to be more or less common to all of the
AFC-II, the Gutzwiller trace formula and the K-IVR, which seems difficult to avoid in these
levels of semiclassical approximation. However, the extent of its quantitative reflection in the
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individual theories can be different, and the above numerical results have demonstrated that
the width in the AFC-II spectrum is small enough to distinguish individual peaks.

This conjecture cannot be independent of the well-known issue of long-time validity
of semiclassical approximation [25] and long-time accuracy of chaotic classical trajectories.
Incidentally, we have observed that the accuracy of most of classical trajectories breaks down
almost abruptly by the time T = 655, which is a technical reason why we stopped the
calculation for figure 14 at T = 655, where the sixth-order symplectic integrator [22] and
the fourth-order locally analytic integrator [26] were used. No significant improvement was
achieved by increasing the orders. Note, however, that T = 655 is long enough to give a sharp
line spectrum for FQ mechanics (shown as green in figure 14). Also, the present conjecture
suggests that the choice of the spatial width of F(q0, 0) should be relevant to control the
spectral width. In fact, our preliminary study shows that the width of the AFC-II spectrum
varies slightly depending on the breadth of F(q0, 0). However, the spectral positions do not
change practically and are well identified. A much more systematic study is necessary.

5. Concluding remarks

We have proposed the AFC-II and reported that it gives the energy spectrum of classically
chaotic systems accurately enough to identify the individual eigenvalues. The trajectories that
support standing quantum waves are the turn-back orbits with weak periodicity. On comparing
the AFC-II spectra with those of the K-IVR, we may claim that a part of the major difficulty
in quantization of chaos has been resolved.

However, we note that there are some classes of dynamics that cannot be quantized in
terms of the AFC-II. For instance, there is no non-trivial turn-back orbit in the stadium-billiard.
Any point on the flat floor of the stadium with zero momentum is a trivial turn-back orbit,
which obviously does not contribute to quantization. (We may be able to remedy this situation
by modifying the potential wall so as to have a finite slope.) This type of chaos (boundary-type
chaos), in which chaotic motion arises from the boundary condition rather than dynamics, has
been extensively studied and is now known to be relevant to the study of electron transport
via the quantum dot. On the other hand, we are interested in chaos of molecular systems, in
which chaotic nature is acquired along trajectories almost everywhere on the potential function
through dynamics itself (dynamics-type chaos). For boundary-type chaos, the Gutzwiller trace
formula should work better than for the dynamics-type chaos, since the periodic orbits can be
searched in a systematic manner making use of the system symmetry, if any, and since their
instability (the positive Liapunov exponent) is not accumulated except at the bouncing on the
wall. Even in dynamics of molecules, there are cases in which nontrivial turn-back orbits do
not exist, as in the molecular rotation. This aspect will be studied in our future publication.

Another point to be explored more precisely is the canonical invariance of the theory.
Recall that the periodic orbits are canonically invariant irrespective of the turn-back boundary
condition. Weak periodicity should result in a deviation from the invariance to some extent. To
see the canonical invariance more explicitly, we should reformulate the correlation function in
momentum representation and see the resultant stationary condition. Also, the theory should
be extended so as to treat bound states that include the tunnelling process [27]. These aspects
will be studied in future.

Yet, it is certainly a fact that the AFC-II is a very promising method of quantization of
chaos (not only chaos but also a wide class of dynamics ranging to regular one). In particular,
since the turn-back orbits are easily generated, the AFC-II can be applied to large systems.
We are beginning to study chaotic dynamics in those system of realistic size. For instance, we
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have already reported a preliminary result of the vibrational spectrum for a cluster composed
of seven identical atoms [13] within the AFC-I scheme.

In treating large molecules, the calculation of the Maslov index appears to be a numerically
tough problem. In the present paper, it has been computed via the stability matrix, for which
2N × 2N coupled ordinary differential equations have to be integrated in contrast to 2N

equations for the Hamilton canonical equations of motion. We have figured out a far easier
method of the calculation of the Maslov index [28]. Including this material, we will report
more detailed characteristics of the AFC-II in the next paper [29].
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